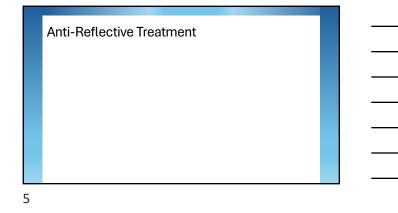
Objectives

- At the end of this course the learner will be able to: Define anti-reflective and blue light treatment. Comprehend how anti-reflective and blue light treatment is applied to a spectacle lens.
- spectacle lens.
 Explain how anti-reflective and blue light treatment achieve their desired function.
 Comprehend how anti-reflective and / or blue light treatment can positively and / or negatively affect visual comfort.

1

2

Anti-Reflective Treatment

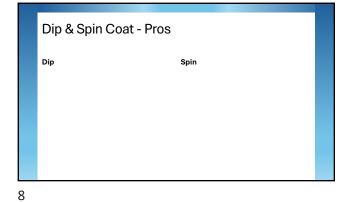

What is it?

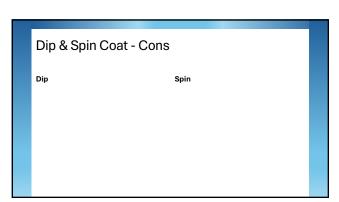
- Anti-reflective is a treatment placed on a spectacle lens intended to reduce reflections induced by that lens.
- It allows more available light to pass through the spectacle lens that can be used for vision.

Anti-Reflective Treatment

What is it?

ANSI Z80., Section 6.1.6.1 states:
 Anti-reflective treatment may reflect no more than 2.5% of the incident light striking the surface of the lens.




Step 1 – Hard Coat

Dip Coat (Front & Back) – The lens is cleaned through a series of chemical baths to remove the factory hard coat, and then a specialty hard coat is applied.

 \mbox{Spin} (Back only) – The lens has a hard coat applied from the factory which is left in place.

7

Act as a primer for adhesion.

Provides scratch-resistance & durability.

10

Application

Step 2 – AR

Chemicals are loaded into the crucible.

11

Application

Step 2 – AR

Lenses are loaded into the carrier.

Generally contains 120 lenses or 60 pairs.

Step 2 – AR

Vacuum brings atmosphere to zero gravity.

13

Application

Step 2 – AR

Laser super heats each chemical, causing it to vaporize.

The chemical vapor adheres to the lens.

14

Application

Step 2 – AR

The process of chemical application repeats until the desired 'stack' is achieved.

Step 2 – AR

The lenses are then brought out of the AR coater and the process is re-started.

This time, each lens is flipped in the carrier so the opposite side will receive the AR coat.

16

How Does it Work

How does anti-reflective neutralize lens reflections?

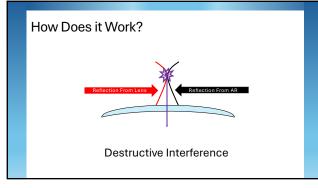
17

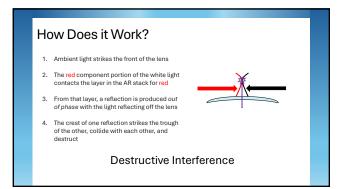
How Does it Work?

White light – Made up of component colors, each consisting of a specific wavelength.

Each wavelength will produce a reflection.

Since we know the wavelength of the component color, we also know the wavelength of the reflection.


How Does it Work?


Destructive Interference -

Using destructive interference for each color, anti-reflective treatment can neutralize reflections from the surface of the lens.

Allows light energy to pass through the lens freely.

19

How Does it Work?

Lens reflections are proportional to the index of refraction.

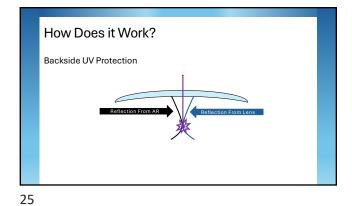
The reduction of reflections becomes more important as the index of refraction increases.

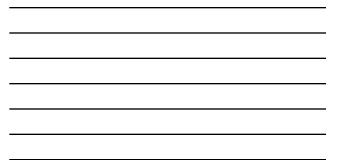
22

How Does it Work?

Reflex color

- The AR stack determines reflex color
- Green reflex color = not all green is neutralized
- Blue reflex color = not all blue is neutralized


23


How Does it Work?

What about the back of the lens?

Some anti-reflective treatments go beyond the visible spectrum to neutralize reflections from ultraviolet (UV) light.

This is how anti-reflective treatment provides UV protection.

Blue Light Treatment

How does a blue light treatment eliminate blue light?

26

Blue Light Treatment

Blue light lenses reduce blue light exposure by:

Filtration

Reflection

Filtration is accomplished by the lens material

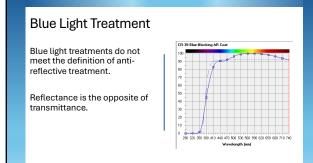
Reflection is accomplished by the treatment

Blue Light Treatment

Destructive vs. Constructive Interference

Destructive =

Constructive =


28

Blue Light Treatment

Blue light protection offered by 'reflecting' blue light

- Observation of reflection will alert to the portion of blue light being targeted • Blue-violet reflections indicate blue light closer to the lower end of the blue light spectrum, or nearer 400nm
- Blue-indigo reflection indicates blue light closer to mid-range of the blue light spectrum, or nearer 450nm

29

30

Darryl Meister's Spectacle Optics

Anti-Reflective Treatment & Photochromic Lenses

How does anti-reflective treatment influence photochromic lenses?

31

AR & Photochromic Lenses

What is the influence of AR on a photochromic lens?

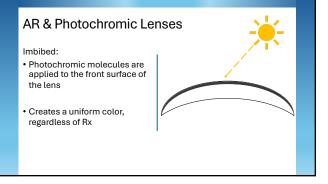
Positive?

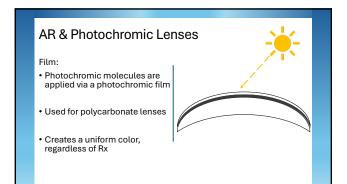
Does AR help a photochromic lens to perform better, in all wearing conditions?

Negative?

Can AR on a photochromic lens hinder its performance?

32


AR & Photochromic Lenses


Photochromic properties are applied to lenses by one of three methods:

- Embedded
- Imbibed
- Film

AR & Photochromic Lenses

All methods require UV and ambient light. More considerate of the ambient light exposure.

- Pro
- of 'works in the car' variations
- Helps in low-light conditions • Cloudy, shade, etc.
- Con Can increase the effectiveness
 • The 'works in the car' variations may get too dark
 - Cold weather and high UV conditions may make regular photochromic lenses too dark

37

Anti-Reflective Treatment & Polarized Lenses

How does anti-reflective treatment influence polarized lenses?

38

AR & Polarized Lenses

What is the influence of AR on a polarized lens?

Positive?

• Does AR help a polarized lens to perform better, in all wearing conditions?

Negative?

• Can AR on a polarized lens hinder its performance?

AR & Polarized Lenses

When recommending a polarized lens, one goal is to decrease the amount of ambient light that reaches the eye.

- Increases visual comfort
- Decreases eye strain
- Polarization decreases bright reflected light

40

AR & Polarized Lenses

When recommending a polarized lens, our main goal is to decrease the amount of UV light that reaches the eye.

- Increases UV protection for the eye and surrounding skin of the
- lids Large lenses
- Wrap framesUV filtering lens material

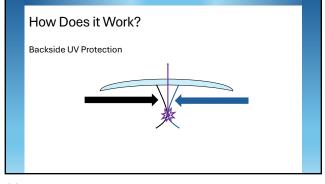
41

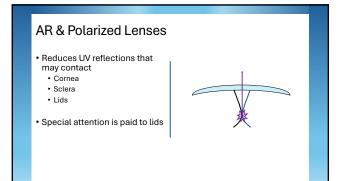
AR & Polarized Lenses

Ambient Light

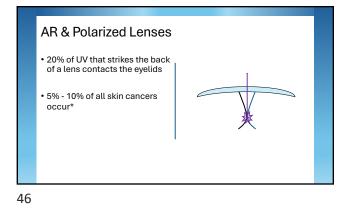
- When reflecting off your eye and cheek, creates an annoying reflection on the back of the lens
- Greatly decreases wearing comfort

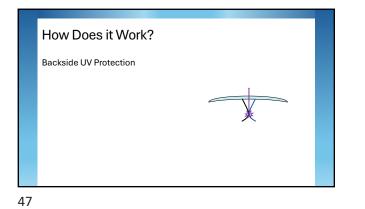
AR on the back of a polarized lens increases wearing comfort by eliminating annoying reflections.


AR & Polarized Lenses


Ambient Light

- When contacting the front of the lens, AR will allow more ambient light to pass through the lens.
- This decreases the light filtration of the lens


AR on the front of a polarized lens may decrease wearing comfort by allowing too much light through the lens.


43



All methods require UV *and* ambient light. More considerate of the ambient light exposure.

Pro

- Con
- Can increase the effectiveness of 'works in the car' variations may get too dark
- Helps in low-light conditions
 Cloudy, shade, etc.
- Cold weather and high UV conditions may make regular photochromic lenses too dark