Rapidly Changing Landscape of Refractive Technologies

Mile Brujic, OD, FAAO <u>mile.brujic75@gmail.com</u> 419-261-9161

<u>Summary</u>

Refractive technologies are evolving quickly. From the diagnostic technologies to the treatment options we have, practitioners have a plethora of options. This course will highlight advancements in the arena of refractive technologies.

Learning Objectives

- 1) Understand diagnostics in refractive technologies
- 2) Discuss treatment advances in refractive technologies
- 3) Understand the applications to improve patient care

Course Outline

- 1) Anterior segment optical coherence tomography
 - a. Corneal pachymetry
 - i. Allows for corneal thickness
 - ii. Contemporary technologies measure 10mm diameter
 - iii. Measures
 - 1. Total thickness
 - a. Thinnest in center
 - 2. Stromal thickness
 - a. 90% of total corneal thickness
 - 3. Epithelial thickness
 - a. 10% of corneal thickness
 - b. Expect even thickness
 - c. Post LASIK thickening
 - d. Dry eye irregularities
 - e. Fuch's endothelial dystrophy
 - f. Epithelial basement membrane dystrophy
 - iv. Variance in expectation in these layers can cause poor refractive outcomes
 - v. Discuss pachymetry scan and risk for keratoconus
 - 1. Monitor overtime with keratoconus patients
 - 2. Discuss relationship with refractive outcomes
 - b. Corneal topography
 - i. Anterior surface topography
 - ii. Posterior surface topography
 - iii. Best fit sphere with anterior and posterior corneal surface

- c. Anterior segment imaging
 - i. Assessment for large refractive irregularities
 - ii. Infrared imaging capabilities
- d. Posterior segment
 - i. Rule out reasons for reduced BCVA
- 2) Higher order aberrations
 - a. Objective measurements
 - i. Automated through advanced refractive technologies
 - ii. Measures at different pupil sizes
 - iii. Simulates low light level vision
 - b. Subjective measurements
 - i. Patient views small spherical target
 - ii. Refraction is performed while patient views the target
 - iii. Can more accurately refract at a higher level of precision
 - c. Pupil control
 - i. Larger pupils expose more higher aberrations
 - ii. Corneal scars and lenticular changes can lead to higher order aberrations
 - iii. Reducing pupil dilation can improve vision
 - 1. brimonidine
- 3) Light and myopia control
 - a. Dopamine is released in the retina
 - b. Is stimulated by melanopsin which is a photopigment
 - c. Melanopsin is stimulated by blue light
 - d. In a dopamine shortage, myopia progression is likely
 - e. General recommendations to prevent myopia progression
 - i. One hour outside a day
 - f. New technologies
 - i. Will deliver fixed amount of blue light on the optic nerve head
 - ii. Done through a virtual reality head set
 - iii. Early evidence suggestions choroidal thickening and a reduction in myopia progression
- 4) New myopia progression options
 - a. Controlled concentration of atropine
 - i. Atropine at concentrations for myopia progression management needs to be compounded
 - ii. Unfortunately is unstable
 - iii. Newer formulation of atropine will be more stable
 - b. Ophthalmic lenses
- 5) Pharmaceuticals for presbyopia
 - a. Reduction in pupil size reduces blur circle and increases a patients depth of focus
 - b. Improves near vision
 - c. A variety of pharmaceuticals that are being studied

- i. Pilocarpine
- ii. Carbachol
- iii. Aceclidine
- iv. Phentolamine
- v. Brimonidine
- 6) Advances in contact lens optics
 - a. Size of optical zone
 - b. Higher order aberration control
 - c. Manipulating the size of the optical zone
 - i. Scleral lens
 - 1. Fixed lens surface that doesn't move with blink
 - 2. Can increase size of optic zone in the lens
- 7) Ocular surface opportunities
 - a. Be certain that the ocular surface is optimized
 - b. Assure meibomian glands are functioning appropriately